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Abstract. Free electromagnetic vector potentials in Coulomb and Gupta-Bleuler gauges 
are shown to be unitary equivalent in both Minkowski and Euclidean regions. For covariant 
gauges, the Euclidean electromagnetic potential is Markovian but non-reflective, whereas 
for the Coulomb gauge it is reflective but only satisfies the Markov property with respect to 
special half-spaces. The Feynman-Kac-Nelson formula can be established for the case of 
the Coulomb gauge. 

1. Introduction 

The problems related to gauges in quantum electrodynamics have been discussed 
extensively by Strocchi and Wightman (1974). Their analysis indicated that it is 
impossible to formulate a relativistic covariant and local (or weakly local) theory of 
quantum electrodynamics in a positive metric Hilbert space using only the four-vector 
potential A,. To overcome this difficulty one can either introduce a Hilbert space with 
indefinite metric, or one has to give up locality and relativistic covariance in order to 
retain the positive metric Hilbert space. 

The first method is known as the Gupta-Bleuler formulation which involves three 
Hilbert spaces X'c 2 c X. A sesquilinear Hermitian form ( . , . ) exists which is 
indefinite on X, non-negative on 2' and zero on X'. The closed subspace X' of X is 
spanned by the states 19) satisfying the nonlinear Gupta-Bleuler subsidiary condition 

aWAI-)(x)l$) = 0. 

The physical space for the photon, denoted by Xphya, is then given by the quotient space 
x'/P. Since x' is not dense in X, the Maxwell equations only hold as a mean value 
between physical .states. 

The second approach is known as the Coulomb or radiation gauge formulation and 
is specified by the gauge conditions 9 .  A(x) = 0, A ,  ( x )  = 0.  In this gauge X = X' = 
Xph, and X' = 0; ( . , . ) is positive definite on x'. Now the Maxwell equations hold as 
operator equations. However, this formulation is no longer manifestly covariant and 
local, so it is necessary to supply a Lorentz transformation with a gauge-dependent term 
in order to obtain covariance of the Coulomb gauge. 

Despite the differences in their mathematical structures, the physical contents of 
both the covariant Gupta-Bleuler gauge formulation and the non-covariant Coulomb 
gauge formulation are the same, in particular the transition probabilities. Ferrari et a1 
(1974) have shown the equivalence of the theories derived from AC and AF, the vector 
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potentials in the Coulomb and Feynman gauges respectively, in terms of their Wight- 
man functions. In this paper we shall show that there exists a unitary map connecting 
the Gupta-Bleuler gauge and Coulomb gauge formulations in both Minkowski and 
Euclidean regions. We shall also extend the results for Euclidean electromagnetic 
vector potentials in covariant gauges (Guerra 1976, Lim 1976) to the case of the 
Coulomb gauge. It is found that the Euclidean vector potential in the Coulomb gauge is 
reflective, but it only satisfies the Markov property with respect to the half-spaces 
bounded by hyperplanes x4 = constant. Finally the Feynman-Kac-Nelson formula for 
such a field can be established in the usual manner. 

2. Free electromagnetic potential in the Minkowski region 

The relativistic two-point function for an electromagnetic potential in an arbitrary 
gauge can be expressed in the form 

W,,(x -Y) = ($0, A,(x)Av(y)90) 

12. lu)  

where? 

D,”(P) = --&?,U + P , P y d l ( P 2 ,  (n  . P Y )  

( 2 . l b )  

n is a unit time-like vector and d l ,  dZ and d3 are gauge-dependent functions of p z  and 

2 +p2n,nyd2(p  , ( n  P Y - ( n .  P)(f l ,P” +n”P,)d3(P2,  ( n .  P I 2 ) ;  

( n  ’ P E  
There are two important cases to be considered, namely 

(i) covariant gauges with D,,(p) independent of n, i.e. d l  = d l ( p 2 )  and d2 = 0 = d3 

(ii) non-covariant gauges with at least one of the non-covariants in D,,(p) (i.e. 

A special case of (i) is the one-parameter family of Gupta-Bleuler gauges charac- 

(2.2) 

where CY is a real parameter. The values of CY corresponding to Feynman, Landau and 
Fried-Yennie gauges are respectively 1, 0 and 3. 

As for (ii), a well known example is the radiation or Coulomb gauge which is 
specified by dl = dZ = d3 = [ (n  . ~ ) ~ - - p ~ ] - l .  If n is chosen to be (1,0,0,0) then D,,, = 0 
for p = 0, 1, 2, 3, and the corresponding expression for D,,(p) in the Coulomb gauge 
becomes 

and 

terms that depend on n )  not vanishing. 

terised by 

D;,,(P) = -g,u -(CY - l)P,P,/P‘ 

(2 .3)  

The relativistic one-particle space for the photon in the Gupta-Bleuler gauge can be 

t We have taken the Minkowski metric g,, to be gw0 = t SWo, g,, = -a,,, and n . p = nap, - r i .  6, 
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defined as follows. Let X be the completion of the vector-valued Schwartz test- 
function space Y’(W4) x C4 with respect to the inner product 

then Xis an indefinite metric Hilbert space since W,, is indefinite. We remark that this 
property is necessary for one to obtain a unitary representation of the Poincare group. 

By imposing the Gupta-Bleuler condition on Xwe  get a positive semidefinite closed 
subspace 

2 = {f E Xlp . f= 0 almost everywhere on C+} 
where fis the Fourier transform off and C+ is the mantle of the forward light cone. Now 
2 is independent of the gauge parameter a. The physical one-photon space in the 
Gupta-Bleuler gauge is then given by the quotient space = X/X“,  where X” is the 
subspace with vanishing norm. 

The one-particle space for the photon in the Coulomb gauge can be defined as 

e=xn2P 
where @ = {fe Wlp = 0). Clearly, 

one-particle spaces. 

is a Hilbert space with positive metric. 
The physical equivalence of these two formulations can be shown in terms of their 

Proposition 1 .  There exists a unitary map 

which defines a unitary equivalence = p. 

Proof. First we note that 

(yAO = 0 Vf E 2. 
Therefore = yXf. But (I - y )  maps 2‘ into XIf, which is spanned by vectors of the 
form i” = p”A ( p ) ,  where A (p) E Y’(R4) is a arbitrary Schwartz test function. y vanishes 
on X’ and y i  = 0 implies 6 E 2‘. Hence X” is the kernel of y. Furthermore, y is well 
defined as can be seen by restricting the Taylor expansion about p = 0 to V+. Thus 

defines a unique decomposition 

2’ = cow 
@=e=x’/X’. U 

or 

The above results can be generalised to the case of field algebra as defined by 
Borchers (1962). Let Y’,, be the n-fold tensor product space of Y’(R4) x R4, with Yo = @. 
Denote by 92 the locally convex direct sum of these spaces, i.e. 92 = O;=OY’~, which has 
elements in the form of a finite sequence 92 3 f  = {fo, fi ,  f 2 ,  . . .}, where foe @, ( f ) , ,  =f,, E 
Y’,,. Equipping 92 with the product 

n 

j = O  
( fxg)n(x lr  * * t xn) = 1 f ; ( x l ,  * .  . ,  xj)gn-j(xj+l, 9 xn), 
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and the involution * defined by 

where - denotes the complex conjugate, then 9 becomes a *- test-function algebra 
(or Borchers algebra) for the photon potential. 

In order for the two-point function of the electromagnetic potential in the Gupta- 
Bleuler gauge WG to define a positive linear functional on  %, the following trans- 
versality condition is necessary: 

12.6 

Let Yll be the test-function algebra satisfying condition (2.3). The two-sided ideal of 
is contained in the kernel of WG and is given by 

9=%\n,n{fl(f)o}=0, ( f ) n  = f y + * n  ( P l , .  ' .  , P I ,  ' , . 3  P n i  
I .  

= p* lA  Exi'wL'"'*n ( p l ,  . . . , F t , .  . . , p,)  for at least one 1 

where A ~L'i*f"'wn E Y,-l is arbitrary. The physical test-function algebra for the photon 
in the Gupta-Bleuler gauge is given by the quotient algebra iPG=%~/4. The positive 
linear functional on SG then determines a unique theory for covariant electromagnetic 
potentials through the Gelfand-Naimark-Segal construction. 

The corresponding test-function algebra for the photon potential in the Coulomb 
gauge is given by 

ytC = 921 ~ { f : l + r r  = o if any pl= 0). 

Let r be the natural algebraic generalisation of the map defined in proposition 1, 
with 

Then we have SC=range  (r9l1). It is not difficult to see that the generalisation of 
proposition 1 holds for photon field algebras. 

crfI0 = f0 rf), = X .  . . x yj;,. 

Proposition 2. I' defines a *-algebra isomorphism 

p z  '31G = '3iI/,9, 

3. Free electromagnetic potentials in the Euclidean region 

Euclidean electrodynamics was first studied by Schwinger (1959) and Fradkin (1967 i .  
Gross (1975) was the first to construct a free Euclidean electromagnetic potential in the 
same spirit as Nelson (1973). The properties of free vector potentials in various 
covariant gauges were studied independently by Guerra (1976) and Lim (1976). In this 
section we shall extend the results to the case of the non-covariant Coulomb gauge. 

First consider the Euclidean (or Schwinger) two-point function of the electromag- 
netic potential in the covariant Gupta-Bleuler gauge: 
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where x and p are the Euclidean four-vectors with p 2  = Z i = , p ? ,  andp . x = X i = ,  pixi, and 
Bi, = 1 if i = p = 1 ,2 ,3 ;  B40 = i and Bi, = 0 otherwise. The matrix transformation Bi, 
is required to change the Minkowski metric g,, to the Euclidean metric Sib Actually 
one can also consider S: as the anti-time-ordered product of the four-vector potential 
(iAo, A) in the Gupta-Bleuler gauge continued to imaginary time. In contrast to the 
relativistic two-point function, the Schwinger function is positive semidefinite if the real 
parameter a is non-negative. A more general form of S: can be obtained by replacing 
a by a non-negative measurable function a b 2 ) .  

The Euclidean vector potential in the Gupta-Bleuler gauge, denoted by A!?, is then 
dcfined as the real generalised gaussian random vector field with mean zero and 
covariance given by S:. This Euclidean field satisfies Nelson's Markov property 
provided the gauge function a ( p 2 )  has an inverse in the form of a polynomial in p 2 .  The 
Markov property also holds for the case of the Landau gauge (with a ( p 2 )  = 0) even 
though S: is singular in this case. However, for all these covariant gauges the. 
Euclidean vector potentials fail to satisfy the reflection property. This is closely related 
to the existence of non-physical states in the relativistic region (see Lim 1976). 

The free Euclidean electromagnetic field Rj can be obtained from A?? by the 
following relation: 

(3.2) 
It has been shown (Yao 1976) that .Fii is both Markovian and reflective and that it leads 
to a Wightman theory in the relativistic region as expected. Here we note that the curl 
operation on a? preserves the Markov property of the field, but the local structures 
with the Markov property for d? and Zj are different. In general the underlying 
probability space for is larger than that for Ri because all the elements of the (T 

algebra generated by .Fij correspond to physical observables, whereas the algebra 
generated by d? includes measurable functions which do not correspond to physical 
observables. 

Now consider the Euclidean one-particle space X given by the completion of the 
real vector-valued test-function space Y(R4) x R4 with respect to the inner product 

4 4 

if... ";, - - aid? -ai&. 

(f, g > x = X ,  1. I J j A ( x ) s i j ( x - y ) g j ( y )  d4X d4y. (3.3) 

X has a non-negative metric in contrast to the indefinite metric of 2%' in the relativistic 
case. In fact, the Euclidean theory is free from the difficulties arising from the gauge 
problem that exists in relativistic vector potentials, and there is no conflict between 
Euclidean covariance and Markovian local structure on the one hand, and the positive 
metric of the one-particle space on the other. 

A natural question now arises. Is it possible to find a subspace of X such that both 
the Markov and reflection properties are satisfied? Our attempts to answer this 
question lead us to consider the Euclidean theory of the electromagnetic potential in the 
Coulomb gauge. 

Consider the subspace X' c X with elements satisfying the Euclidean transversality 
condition 24=, a& = 0. For a given choice of time axis it is possible to find a unique 
horizontal representative such that f4 = 0. This can be achieved by the projection 
f + f i  - (pif4/p4). Denote by @ the closed subspace spanned by all such vectors (i.e. all 
f~ X such that aifi = 0 and f4 = 0). The space x' has the decomposition 

X' = @@P (3.4) 
where 5"' is the subspace of the longitudinal elements. However, such a decomposition 
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is not Euclidean covariant since YCc is not left invariant under the full Euclidean group 
ISO(4). 

The space Y f  is none other than the one-particle space for SP?, the Euclidean vector 
potential in the Coulomb gauge. It is clear from the above discussion that d? is not 
Euclidean covariant. However, zd? satisfies the reflection property. 
unitary time-reflection operator defined by 

6: ff (x ,  x4) -+ ( -  l)"4ff ( x ,  - x d  

Since f4 = 0 in YF, it is not difficult to show that Yc' is invariant under 8. 
the following proposition. 

Let tl be the 

( 3 . 5 )  

We then have 

Proposition 3. The Euclidean electromagnetic potential in the Coulomb gauge satisfies 
the reflection property. 

This result agrees with our remark that the reflection property is closely related to 
the metric of the relativistic Hilbert space of states, which is positive definite in this case. 
Thus Yr" can be considered as the 'Euclidean physical subspace' in this sense. 

In contrast to the Euclidean potentials in covariant gauges, the non-covariant d: 
does not satisfy Nelson's Markov property. However, it is Markovian with respect to 
special half-spaces. Hegerfeldt (1974) has replaced Nelson's Markov property by a 
more general concept, the T positivity, such that it is still strong enough to allow the 
relativistic theory by analytic continuation. To recall the meaning of T positivity, let E,  
and Eo denote the projections of Yl' with supports rW2 = { x  E R4/x4 3 0) and L& = 
{ x  E R484/x4 = 0)  respectively, and the corresponding projections on 5 f  by E: and E;. 
Then following Challifour (1976) T positivity means T = E+6E+ 2 0. This is, in fact, a 
generalisation of Hegerfeldt's original definition which is in terms of expectational 
functionals, because XL is in general a proper subspace of the closed linear span 
Sp{exp(i.d(f))lfc XL}.  Now the SP? furnish an example of an Euclidean field which is T 
positive but yet fails to satisfy Nelson's Markov property. 

Proposition 4. SPF is Markovian with respect to the half-spaces bounded by x 4 =  
constant. 

Proof. Basically our proof is based on the results of Hegerfeldt and Challifour. Consider 
the subspace X :  =E+??. According to the decomposition (3.4) any f E Ytk can be 
written as 

f: =fi +fl: 

where fi E and f r: E Yt!L Therefore 

(f', E+BE+f')x=(fL e f : ) x = ( f i ,  @fi)x+(f:, Of:), 
But f ?  is of the form (f'i+, e/p4f'I+); thus 
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Therefore E+&??+ = EE8EE. By noting that fi is 8-invariant it is easy to show that 
EE8EE 3 0. To show that EE8EY is a projector, we need to verify that (Ey8EE)’ = 
Ey8EE: 

(e, ( E W E ) ’ f i ) . w = ( f i ,  8EEefi)x 

= (fi, 8E:fi >sc 

= <e, EE@EEe>x, 

where we have again made use of the time-reflection invariance of p. Finally, by using 
an argument similar to that given by Hegerfeldt (1974), it can be shown that E%? = 
E:, which completes the proof. 0 

Here we note that a?, the Euclidean vector potential in covariant gauges and 
defined as a generalised gaussian vector field over X, is Markovian in Nelson’s sense. 
The embedding of X in is nonlocal, so it is not surprising that d? as a generalised 
vector field over Xc is only Markovian with respect to special half-spaces. 

Furthermore, the T positivity we have shown above is just the Osterwalder- 
Schrader positivity. However, due to the fact that & is non-reflective, one cannot 
make use of the known result that the Markov path space implies the Osterwalder- 
Schrader path space (see Klein 1978). 

To find the connection between d? and &, we shall consider the ‘Euclidean 
one-particle physical space’ as XG = X / V .  Then the Euclidean version of proposition 
1 is valid. 

Prupusition 5. There exists a unitary map 

YE : f i  -* f i  - ~ j ( f 4 / ~ 4 )  

which defines a unitary equivalence .?if = p. 

The proof is similar to that for proposition 1 and therefore we shall omit it. One can 
extend this result to the case of Euclidean (or Schwinger) field algebra for photon 
potentials in a manner similar to that for the relativistic potentials. 

To recover the relativistic one-particle space %? from .%? the method of Oster- 
walder and Schrader (1973, 1975) can be used (see also Ozkaynak 1974). Oster- 
walder-Schrader positivity enables (8e, g?)sr to define a positive sesquilinear form on e x e. Let N be the closed linear subspace of e which consists of vectors h such 
that (Oh, h)sr = 0. Then { e / N ,  (., .)e} defines a pre-Hilbert space whose closure can 
be identified with the real relativistic one-particle space e. 
Proposition 6. is isomorphic to the closure of e / N ,  with the topology given by 
U+, g+)suE = (of+, g+>x. 

Finally we shall establish the free Feynman-Kac-Nelson formula for the vector 
potential in the Coulomb gauge. Let P ( M )  be the space of square-integrable functions 
on the sample space of &, measurable with respect to the CT algebra generated by 
{ d c ( f ) ) l f ~ M } .  Denote by J the projection of p(9Lr1) onto 2’*(&), and let T, be the 
induced unitary action of the time-translation in X with T&, x 4 )  = f ( x ,  x4 - s). Then 
the free Feynman-Kac-Nelson formula is given by the following proposition. 
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Proposition 7. e--SHou = JT,u, U E Z 2 ( e  ) where Ho is the free Hamiltonian on ). 

Proof. Since e c .?if is closed in Yf under time translation and complex conjugation, 
this is in fact a result on Yf rather than YP. Consider those f € X C  which are C" 
functions with compact support such that f ( p )  = 0 if lei < E  or IpI > E -  for some E 1 0 .  
Such test functions are dense in p. Iff and g are two such functions, then for real s and 
r, f ( x )  + f ( x ,  s) and g(x) -+ g(x, r )  are in e. Then by a direct computation 

t m  t m  

( f ,  g h = C  J I t{exp(-it-sl.j~l)[f,(?, s)gl(?, t)lap;)dt ds. 
I --a7 -m 

But .?if is the closure of the space of such functions, so the time translation group in 7r' 
is the minimal unitary extension of the semi-group in 36.  The rest of the proof then 
follows the same argument as for the scalar case (see, for example, Simon 1974). 

4. Conclusion 

The Euclidean formulation of free electromagnetic potentials in various gauges has 
some nice features. For example, in the covariant gauges, the Euclidean potentials do 
not have difficulties caused by gauge problems. For the nonlocal Coulomb gauge vector 
potential, the 'Euclideanisation' gives rise to some kind of local structure in terms of the 
Markov property with respect to special half-spaces. The generalisation of our results 
to the linearised gravitational potential has been studied by the author (Lim 1979). 
Recently, the Euclidean method has also been applied to non-Abelian gauge theories 
such as the Yang-Mills field (see, for example, Osterwalder and Seiler 1978, Schrader 
1978). 
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